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Abstract

Background: The causes of autism spectrum disorders (ASD) remain largely unknown and widely debated;
however, evidence increasingly points to the importance of environmental exposures. A growing number of studies
use geographic variability in ASD prevalence or exposure patterns to investigate the association between
environmental factors and ASD. However, differences in the geographic distribution of established risk and
predictive factors for ASD, such as maternal education or age, can interfere with investigations of ASD etiology. We
evaluated geographic variability in the prevalence of ASD in central North Carolina and the impact of spatial
confounding by known risk and predictive factors.

Methods: Children meeting a standardized case definition for ASD at 8 years of age were identified through
records-based surveillance for 8 counties biennially from 2002 to 2008 (n=532). Vital records were used to identify
the underlying cohort (15% random sample of children born in the same years as children with an ASD, n=11,034),
and to obtain birth addresses. We used generalized additive models (GAMs) to estimate the prevalence of ASD
across the region by smoothing latitude and longitude. GAMs, unlike methods used in previous spatial analyses of
ASD, allow for extensive adjustment of individual-level risk factors (e.g. maternal age and education) when
evaluating spatial variability of disease prevalence.

Results: Unadjusted maps revealed geographic variation in surveillance-recognized ASD. Children born in certain
regions of the study area were up to 1.27 times as likely to be recognized as having ASD compared to children
born in the study area as a whole (prevalence ratio (PR) range across the study area 0.57-1.27; global P=0.003).
However, geographic gradients of ASD prevalence were attenuated after adjusting for spatial confounders (adjusted
PR range 0.72-1.12 across the study area; global P=0.052).

Conclusions: In these data, spatial variation of ASD in central NC can be explained largely by factors impacting
diagnosis, such as maternal education, emphasizing the importance of adjusting for differences in the geographic
distribution of known individual-level predictors in spatial analyses of ASD. These results underscore the critical
importance of accounting for such factors in studies of environmental exposures that vary across regions.
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Background
Autism spectrum disorders (ASD) are complex neurode-
velopmental disorders characterized by impaired social
interaction and communication, and restrictive and re-
petitive behavior [1]. Estimates in 2008 indicate that ap-
proximately 1 in 88 children have ASD and that the
prevalence of documented ASD is on the rise [2]. The
causes for ASD remain largely unknown and widely
debated [3,4]. Environmental exposures are hypothesized
to contribute to ASD etiology [5]; however, identifying
exposures of concern has been complicated by the rela-
tive rarity of ASD, the extensive number of candidate
exposures, and the lack of exposure measurements du-
ring early life, the developmentally relevant time period
for ASD. Thus, studies have explored the geographic dis-
tribution of ASD as a means for generating hypotheses
about spatially distributed environmental exposures.
Additionally, studies have used geographically-based ex-
posure assignment to evaluate the impact of specific
exposures such as air pollutants, pesticides, and hazar-
dous wastes on ASD risk [6-9].
One problem with evaluating the geographically non-

random prevalence of ASD for etiologic purposes lies in
difficulties disentangling the geographic distribution of
other factors associated with diagnosis [10,11]. For ex-
ample, higher maternal education is associated with
increased ASD diagnosis in the United States [12,13] but
not in some European countries [14]. These results sug-
gest that maternal education is a factor in promoting
recognition of ASD, but not necessarily the occurrence
of ASD. Identifying patterns related to ASD diagnosis
may be helpful for public health services allocation;
however, to generate hypotheses about etiology, we must
distinguish diagnostic patterns from patterns of ASD oc-
currence. For example, prioritizing investigations of a
geographically-based environmental cause may be un-
warranted if the observed spatial pattern is driven by
maternal education (i.e. spatial confounding).
Two previous studies investigated geographic variability

of ASD as a means of identifying environmental exposures
related to ASD prevalence [15,16]. Both reported that chil-
dren born in certain regions of California were more likely
to have a recognized ASD than children born in other
parts of the state [15,16]. The authors attributed their
findings to regional differences in the underlying popu-
lation (i.e. demographic and socioeconomic factors) or
geographic variability of environmental exposures; but
were unable to disentangle factors promoting diagnosis
from environmental exposures because they did not ad-
just for potentially important individual-level spatial
confounding [15,16].
In order to determine the potential for environmen-

tally distributed exposure to be associated with ASD in
central North Carolina (such as contaminants in air or
water), we first explored whether spatial differences in
ASD prevalence existed and then whether differences
remained after accounting for spatially distributed co-
variates associated with ASD risk and diagnosis. We
used a method of spatial epidemiology that applies gen-
eralized additive models (GAMs) to assess the spatial
variation of disease in a region while simultaneously
adjusting for other geographically distributed individual-
level factors [17,18] such as maternal education, age, and
smoking. Combining GAMs and geographic information
systems allowed us to predict a continuous surface of
ASD prevalence across our study area. Our research
serves not only to expand the consideration of spatial pat-
terns of ASD to geographic regions other than California
but also to improve the utility of such studies by directly
examining how adjustment for known risk and predic-
tive factors influences geographic patterns. Patterns
remaining after accounting for factors that influence ASD
recognition may better reveal the distribution of novel
geographically distributed etiologic factors impacting ASD
prevalence.
Methods
Study population
The Autism and Developmental Disabilities Monitoring
(ADDM) Network is an active, population-based surveil-
lance program that monitors the prevalence of develop-
mental disabilities among children aged 8 years, an age
by which most children with ASD have been evaluated
[19], in selected geographic regions across the United
States [20]. The ADDM Network conducts standardized
review of medical and educational records and trained
clinicians determine whether standardized case defini-
tions for ASD and intellectual disability (ID) are met
[20]. Our analyses utilized data from the North Carolina
ADDM site (NC-ADDM), which began biennial surveil-
lance in 2002. Analyses were restricted to children born
in the 8 counties that were under surveillance during all
study years (2002–2008).
To represent the underlying population, we randomly

selected a 15% sample of birth records for children born
in the same study counties and years as children
included in ADDM (biennial 1994–2000; n=11,908,
representing a region averaging 20,000 births per year).
Figure 1 provides orientation to the population distribu-
tion in NC, where red dots indicate children with devel-
opmental disabilities (ASD or ID) and blue dots indicate
children randomly sampled from the entire central NC
area. We excluded children who were adopted because
information on birth address was missing and those who
died in infancy because they were not part of the risk set
for development disabilities (n=93; <1%). NC-ADDM
and our current analyses were reviewed and approved by



Figure 1 Eight county central North Carolina study area. The
residential addresses at birth for the birth cohort (blue points) and
children with ASD or ID (red points) born in 1994, 1996, 1998 and
2000 are displayed with altered locations to preserve confidentiality.
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the Institutional Review Board at the University of North
Carolina-Chapel Hill.

ASD and ID classification
To fully explore the impact of spatial confounding on
the geographic distribution of developmental disability,
we considered 4 different disability groups: all children
with an ASD, 2 subgroups within all ASD classified by
the co-occurrence of ID (ASD+ID and ASD-ID), and the
independent group of all children with ID without re-
gard to ASD status. Examining these independent and
cross-classified groups provided a more nuanced disen-
tanglement of factors which may act differently to pro-
mote ASD, versus ID, recognition, as follows. Diagnosis
of ASD requires comprehensive evaluation of a constel-
lation of behaviors that can be more involved than a sin-
gular evaluation assessment of Intelligence Quotient
(IQ) to determine ID. Yet, ASD often occurs with ID,
frequently presenting more severe disability that is
recognized at an earlier age. In addition, Durkin et al.
(2010) reported a differential socioeconomic (SES) gradi-
ent in ASD prevalence by the presence or absence of ID;
SES acts as a stronger risk factor for ASD-ID compared
to ASD+ID [3]. Because we expect SES to vary spatially
and be a spatial confounder, analyzing ASD without re-
spect to ID may mask the true spatial patterning of
disease.
Children met the standardized case definition for ASD

if clinician reviewers determined their developmental
evaluation records indicated behaviors consistent with
ASD, based on the Diagnostic and Statistical Manual
IVTM criteria for Autistic Disorder, Asperger Disorder,
or Pervasive Developmental Disorder Not-Otherwise-
Specified [21]. Children met the standardized definition
for ID if clinician review of developmental evaluations
determined they had an IQ ≤ 70 on the most recently
administered psychometrics test such as the Battelle–
cognitive domain [22], Differential Ability Scales [23],
Stanford-Binet–4th ed. [24], Wechsler Preschool and
Primary Scale of Intelligence [25], and the Wechsler
Intelligence Scale for Children-III [26], or, in the absence
of test scores, a written statement in the records indi-
cated the presence of a severe or profound intellectual
disability [20]. Our analyses included 561 children with
ASD, who were further classified into two subgroups:
children with ASD without ID (ASD-ID, n=330), and
children with ASD and ID (ASD+ID, n=231). As a com-
parison to the ASD analyses, we conducted additional
analyses investigating the spatial variability in the preva-
lence of ID (n=1,028) regardless of ASD status.

Residential location and covariates
Surveillance data were linked to birth records to obtain
the residential address and covariate information at the
time of birth of children with ASD and ID. Birth data
were chosen to reflect the most etiologically relevant
time period for brain development [27].
We combined several methods to geocode (i.e. assign

latitude and longitude coordinates) the residential birth
addresses of study children to improve geocoding accur-
acy and reduce positional errors [28]. First, we ran all
addresses through the ZP4 software which cleans and
updates addresses using U.S. Postal Service databases
(e.g. converting rural routes to E-911 street names) (ver-
sion expiring March 2011, Semphoria; Memphis Tennes-
see). We then cleaned all addresses individually and
geocoded them using ArcGIS (version 9.3, Redlands,
California) and U.S. Census Tigerline files [29]. For un-
matched addresses, we used Google Maps to locate the
residence where possible [30]. Using these methods, we
successfully geocoded 12,299 (93.41%) of the 13,167 resi-
dential addresses. Of the addresses we were unable to
geocode, 379 (2.88%) were post office boxes and 489
(3.71%) were addresses that were either incomplete or
that we were not able to geocode to a specific location.
Geocoding success was similar for the birth cohort and
children with ASD and ID.

Spatial analysis
We estimated the log odds of ASD and ID using GAMs,
an extension of linear regression models that can analyze
binary outcome data and accommodate both parametric
and non-parametric model components [17]. For non-
parametric model terms, GAMs replace the traditional
exposure term in an ordinary logistic regression with a
smooth term (i.e. a term of best fit after adjusting for
other covariates). In these analyses we applied a bivariate
smooth to latitude and longitude coordinates and
included all other covariates as parametric terms [17,18].
We used a locally weighted regression smoother

(loess) which adapts to changes in the data density that
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are likely to occur in analyses of residential locations
due to variability in population density. To predict
prevalence the loess smoother utilizes information from
nearby data points (weighting information based on its
distance from the prediction point). The region or
neighborhood from which data are drawn to predict
prevalence is based on the percentage of data points in
the neighborhood and is referred to as the span size.
Choice of span size is a trade-off between bias and vari-
ability. A larger span size (more data included) results in
a flatter surface with low variability but increased bias,
while a small span size results in high variability and
comparatively low bias. We determined the optimal
amount of smoothing (optimal span size), by minimizing
Akaike’s Information Criterion (AIC) [17,18]. A large op-
timal span size indicates less spatial variability in preva-
lence compared to a small optimal span.
We created a grid covering the study area that

extended across all latitude and longitude coordinates of
all addresses. We excluded grid points in regions of the
study area where no children in our sample were born.
The resulting grid comprised approximately 4,300
points. We predicted the log odds for each of the 4 de-
velopmental outcome groups (e.g. ASD) at each point
on the grid and calculated an odds ratio using the entire
study area as the referent group; the odds at each point
was divided by the odds from a reduced model which
omitted the latitude and longitude smooth term [18].
We did not remove children with developmental out-
comes from the random selection of births drawn to
represent the underlying distribution of births and, con-
sequently, some cases were included in the denominator.
As a result, the odds ratios from these models are math-
ematically equivalent to prevalence ratios. We mapped
prevalence ratios using a continuous color scale (blue to
red) and a constant scale range for all maps with the
same outcome (i.e. ASD; ASD+ID; ASD-ID; and ID).
To provide information in the interpretation of spatial

patterns that could be driven by sparse data, we pre-
formed a 2-step statistical screening procedure, as fol-
lows. First, we tested the null hypothesis that
developmental disability does not depend on geographic
location, generally (e.g. the predicted map surface is a
flat horizontal plane). Residential locations of individuals
were permuted 999 times while preserving their case
status and covariates [as described in 20]. In each per-
mutation, the GAM with the optimal span size from the
original dataset was run and the global deviance statistic
computed. We used a conservative p<0.025, which
accounts for inflated type 1 error rates associated with
using the optimal span size for the original dataset in
permutations, to determine if location was a statistically
significant predictor of disability [details in 31]. If the
global statistic indicated that location was a statistically
significant predictor of disability generally, we next eva-
luated location-specific (point-wise) departures from the
null hypothesis using the same set of permutations
[18,31]. Regions with significantly increased or decreased
surveillance-recognized ASD or ID prevalence were
defined as points ranking in the upper or lower 2.5% of
the distribution of permuted prevalence ratios at each
point, respectively [18].
Statistical analyses were performed in the R Package

2.12.02 (Vienna, Austria) using the gam library and a local
scoring algorithm GAM estimation procedure and publi-
cally available statistical code [32,33]. All maps were cre-
ated using ArcGIS 9.3 (version 9.3, Redlands, California).

Confounding
We adjusted models for several previously established
ASD predictive factors including year of birth; plurality;
maternal age, race/ethnicity, and level of education; and
report of tobacco use during pregnancy (categorizations
in Table 1, [3,11,12,34-36]). Covariate data were nearly
complete for these variables; however 35 children (<1%)
had missing data and were excluded from all analyses.
Additionally, we investigated confounding by other fac-
tors potentially related to ASD risk or recognition in-
cluding method of delivery (vaginal delivery vs. cesarean
section), marital status (married vs. unmarried), birth
weight (<2500 g; 2501–3000 g; 3001–4000 g; >4000 g),
and adequacy of prenatal care [assessed using the Ad-
equacy of Prenatal Care Utilization Index; categorized as
less than adequate (inadequate or intermediate prenatal
care); adequate; adequate-plus [37]]. We used 3
approaches to fully assess the confounding influence of
these factors: 1) We assessed the change in patterns of
spatial variability, using a side by side visual inspection
of maps before and after adjustment, comparing the
areas of reduced and elevated prevalence ratios and the
color intensities (indicating the magnitude of prevalence
ratios). To assure equivalency, the number of observa-
tions and span size were held constant [18]. 2) We also
investigated changes in the model-selected optimal span
size of analyses with and without adjustment. A smaller
optimal span size, using less of the data, is selected when
the data supports more peaks and valleys in prevalence.
It follows that a change in the optimal span size after
the inclusion of a covariate can indicate spatial con-
founding. 3) Finally, to investigate the spatial variability
of the predictive factors themselves (spatial associations
between the factor and disability, necessary to cause
confounding), we compared maps of each covariate to
maps of the developmental disability.

Robustness of analyses
Our final dataset contained some siblings. In addition to
being genetically more similar to each other, siblings



Table 1 Selected Characteristics of the Birth Cohort and Children with ASD and ID in Eight North Carolina Counties in
2002, 2004, 2006 and 2008

Variable Birth Cohort
n (%)

All ASD
n (%)

ASD-ID
n (%)

ASD+ID
n (%)

All ID
n (%)

Total 11809 (100.00) 561 (100.00) 330 (100.00) 231 (100.00) 1028 (100.00)

Sex

Male 6073 (51.43) 464 (82.71) 279 (84.55) 185 (80.09) 665 (64.69)

Female 5736 (48.57) 97 (17.29) 51 (15.45) 46 (19.91) 363 (35.31)

Year of Birth

1994 2727 (23.09) 87 (15.51) 49 (14.85) 38 (16.45) 224 (21.79)

1996 2825 (23.92) 119 (21.21) 66 (20.00) 53 (22.94) 266 (25.88)

1998 2958 (25.05) 151 (26.92) 86 (26.06) 65 (28.14) 254 (24.71)

2000 3299 (27.94) 204 (36.36) 129 (39.09) 75 (32.47) 284 (27.63)

Maternal Age at Birth

Under 25 4984 (42.21) 184 (32.80) 89 (26.97) 95 (41.13) 460 (44.75)

25-35 5435 (46.02) 281 (50.09) 184 (55.76) 97 (41.99) 465 (45.23)

Over 35 1388 (11.75) 96 (17.11) 57 (17.27) 39 (16.88) 103 (10.02)

Missing 2 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Maternal Race

White 8148 (69.00) 368 (65.6) 238 (72.12) 130 (56.28) 519 (50.49)

Other 3661 (31.00) 193 (34.4) 92 (27.88) 101 (43.72) 509 (49.51)

Maternal Educational Attainment

Less than High School 2553 (21.62) 76 (13.55) 29 (8.79) 47 (20.35) 377 (36.67)

High School 3424 (29.00) 149 (26.56) 66 (20.00) 83 (35.93) 372 (36.19)

Some College 2472 (20.93) 126 (22.46) 77 (23.33) 49 (21.21) 144 (14.01)

College or More 3341 (28.29) 208 (37.08) 157 (47.58) 51 (22.08) 134 (13.04)

Missing 19 (0.16) 2 (0.36) 1 (0.30) 1 (0.43) 1 (0.10)

Maternal Tobacco Use During Pregnancy

Yes 1647 (13.95) 67 (11.94) 38 (11.52) 29 (12.55) 208 (20.23)

No 10150 (85.95) 493 (87.88) 292 (88.48) 201 (87.01) 819 (79.67)

Missing 12 (0.10) 1 (0.18) 0 (0.00) 1 (0.43) 1 (0.10)

Plurality

Yes 353 (2.99) 23 (4.10) 14 (4.24) 9 (3.90) 54 (5.25)

No 11456 (97.01) 538 (95.90) 316 (95.76) 222 (96.10) 974 (94.75)
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typically share the same residence. Including siblings li-
ving at the same address in analyses could induce spatial
clustering as a result of familial (i.e. genetic) similarities
rather than geographically-linked factors. To assess the
robustness of our results to including a small number of
sibling groups, we conducted secondary analyses includ-
ing only one randomly selected child per family. Families
were defined as children for whom the mother had the
same first and maiden name and date of birth (obtained
from birth certificates). Because information for fathers
was missing and incomplete on many birth records, we
did not attempt to identify paternal siblings.

Results
Selected characteristics for the birth cohort and children
with ASD or ID are displayed in Table 1. Children with
ASD were more likely to be male, have older mothers,
and mothers with higher educational attainment. As has
been reported previously [2,38], the age 8 prevalence of
ASD in the region increased from 2002–2008, however
the prevalence of ID remained relatively stable (Table 1).
Residential locations at birth for our study population
are displayed in Figure 1 with slight alteration to pre-
serve confidentiality.
We found geographic variability in ASD prevalence

across the study area in unadjusted analyses, as indicated
by the global statistical test (Figure 2a; optimal span
size=0.75; global P=0.003; Table 2). The Point-wise stat-
istical tests identified areas of increased ASD prevalence
in portions of Alamance, Durham, and Orange Counties,
and children living in these areas were 1.10 to 1.27 times
as likely to have a surveillance-recognized ASD at age 8
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years compared to children born in the study area as a
whole. Conversely, children born in the western part of
the region were 0.57 to 0.90 times as likely to have a
surveillance-recognized ASD. Geographic variability in
ASD prevalence was attenuated after adjusting for con-
founding by year of birth; plurality; maternal age, race,
and level of education; and report of tobacco use during
pregnancy, indicated by the following results. In the
adjusted model, the optimal span size (determined by
minimizing the model AIC) increased, indicating less
variability, and the global p-value was not consistent
with departures from a flat pattern of ASD prevalence
(Figure 2b; optimal span=0.95; global P=0.052; Table 2).
The range of prevalence ratios across the study area was
diminished: the adjusted model yielded PRs ranging
from 0.72 to 1.12, in contrast to the unadjusted model,
where PRs ranged from 0.57 to 1.27.
Additionally adjusting for method of delivery, marital

status, birthweight, and adequacy of prenatal care did
Figure 2 Geographic distribution of ASD prevalence relative to the b
adjusted models (B) are presented using the optimal span size of eac
different than flat (global P=0.003). Areas of significantly increased and dec
model is not significantly different than flat (global P=0.052). Adjustment fa
education; and report of tobacco use during pregnancy.
not change the appearance of maps for any of the 4 de-
velopmental disability groups considered, or the range of
prevalence ratios observed across the study area; these
variables were dropped from adjusted analyses. Spatial
confounding was driven primarily by the higher educa-
tional attainment in Alamance, Chatham, Durham, and
Orange Counties, and to a lesser extent, to greater ma-
ternal age observed in the same counties; maps with ad-
justment for maternal age and education only had the
same optimal span size (0.95), a similar range of preva-
lence ratios, and were visually very similar to the fully
adjusted maps. When we examined the patterns of ma-
ternal educational attainment and age across the study
area, both were similar to the unadjusted ASD pattern.
For example, mothers living in the areas where the un-
adjusted ASD prevalence was highest were approxi-
mately 1.75 times as likely to have completed college
than women in the study area as a whole (Additional
file 1: Figure S1).
irth cohort n=11,034 and ASD n=532: Unadjusted (A) and fully
h (0.75 and 0.95 respectively). The unadjusted model is significantly
reased prevalence are indicated by black contour bands. Adjusted
ctors were year of birth; plurality; maternal age, race, and level of



Table 2 Summary of Spatial Analyses

Variable All ASD (birth cohort
n=11,034 and ASD n=532)

ASD-ID (birth cohort
n=11,034 and ASD-ID n=318)

ASD+ID (birth cohort
n=11,034 and ASD+ID n=214)

All ID (birth cohort
n=11,034 and ID n=916)

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

PR Range 0.57-1.27 0.72-1.12 0.63-1.66 0.73-1.22 0.49-1.40 0.56-1.20 0.12-2.23 0.44-1.75

Span Size 0.75 0.95 0.70 0.95 0.95 0.95 0.10 0.30

Global p-value 0.003 0.052 0.027 0.294 0.041 0.196 <0.001 0.065

Figure 2a 2b – AF 2b – AF 2c 3a 3b

AF – Additional File.
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Among the 532 children with ASD, 214 (40.22%) also
had an ID. The spatial patterns of both subgroups (ASD
+ID and ASD-ID) were similar to each other and to the
map of the combined group (all ASD); the locations of
increased prevalence and the intensity of the increases
were similar across all maps (Table 2; Additional file 1:
Figure S2). Adjusting for spatial confounding resulted in
flatter maps of ASD+ID and ASD-ID; however, greater
attenuation was observed in the analysis of ASD-ID in
Figure 3 Geographic distribution of ID prevalence relative to the birt
adjusted models (B) are presented using the optimal span size of eac
different than flat (global P<0.001). Areas of significantly increased and dec
not significantly different than flat (global P=0.065). Adjustment factors wer
and report of tobacco use during pregnancy.
which the optimal span size increased from 0.70 to
0.95 after adjustment (indicating the surface was less
variable/ more flat after adjustment; Table 2; un-
adjusted figures not shown). Additionally, the range of
PRs was more substantially attenuated by adjustment in
the analysis of ASD-ID. In our sample, ASD-ID was 1.33
times as high in children who had mothers with college
or more education (referent group=children of mothers
with some post secondary education; P=0.059); but these
h cohort n=11,034 and ID n=916: Unadjusted (A) and fully
h (0.10 and 0.30 respectively). The unadjusted model is significantly
reased risk are indicated by black contour bands. Adjusted model is
e year of birth; plurality; maternal age, race, and level of education;
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same mothers were less likely than mothers with some
postsecondary education to have a child with ASD + ID
(aPR = 0.67, P = 0.060).
When ID was analyzed as a separate disability, un-

adjusted analyses revealed significant spatial variability
in prevalence across the study area; several areas of
increased and decreased ID prevalence were observed
(Figure 3a; optimal span = 0.10; global P < 0.001). Geo-
graphic gradients in prevalence ratios were somewhat
attenuated in the adjusted analyses, however, patterns of
residual variability in the prevalence of ID remained
after accounting for known predictors (Figure 3b; opti-
mal span = 0.30; global P = 0.065). Additionally, al-
though adjusting for spatial confounding resulted in a
larger span size, the optimal span size of the adjusted
analyses remained small (0.30), indicating spatial vari-
ability; however the adjusted analyses did not reach glo-
bal statistical significance at the alpha = 0.025 level.
Only 269 sibling pairs were in our analyses and their

impact on analyses of both ASD and ID was negligible.
When we randomly selected one child from each family
for analyses, the pattern of spatial variability was quite
similar to analyses including all children (results not
shown).

Discussion
Although we observed spatial variability in ASD preva-
lence in unadjusted analyses, the pattern of ASD
appeared to be largely explained by factors influencing
diagnosis – maternal age and education – which differed
across the study area. The larger optimal span size and
global p-value in the adjusted analyses, as well as
decreased variability in prevalence ratios across the
study area, all indicated less geographic variability after
adjustment for known risk and predictive factors for
ASD. Our results corroborate previous reports [15,16]
demonstrating spatial variability in ASD prevalence be-
fore adjusting for spatial confounding. In secondary ana-
lyses Van Meter and colleagues reported the impact of
living in neighborhoods with high ASD prevalence was
diminished in analyses adjusting for parental education,
a finding consistent with our results [16].
Our results highlight the importance of adjusting for

the geographic distribution of known individual-level
predictors in spatial analyses. Here, adjustment for
socioeconomic factors associated with diagnosis greatly
attenuated geographic variability in ASD prevalence.
This has implications for studies of ASD etiology that
assign environmental exposures based on geography,
such as air pollutants and agricultural pesticides, for
which we caution the causal interpretation of geographic
patterns that are not controlled for individual-level fac-
tors. Using GAMs allowed us to carefully account for
known risk and diagnostic factors, a major strength of
these analyses [18]. In addition, we considered both
the statistical and qualitative aspects of the observed
geographic patterns, tempering interpretation of areas
of sparse data by considering tests of global deviance
and changes in the optimal span size along-side visual
inspection of the patterns in our interpretation of
results.
NC-ADDM Network provided a large population

based sample with information on co-occurring condi-
tions, allowing us to consider differences in spatial con-
founding by the severity and type of disability. Patterns
for separate disability groups, ASD+ID and ASD-ID,
were visually similar to those for all ASD; however,
ASD-ID appeared to be more impacted by spatial con-
founding as indicated by a greater attenuation in preva-
lence ratios and a increase of the optimal span size in
the adjusted analysis. The associations between ASD
(+/−ID) and maternal education and age that we
observed in these analyses are consistent with previously
reported associations in non-spatial analyses [3,4] which
indicate that ASD-ID is more strongly associated with
higher SES than ASD+ID.
Although the global significance test did not indicate

variability, our results suggest that ID prevalence varied
geographically across the study area; even after adjusting
for known spatial confounders the optimal span size
remained small and results were visually suggestive of
geographic differences in ID prevalence. There are sev-
eral possible explanations for the observed variability in
ID, including residual confounding by unmeasured vari-
ables and differences in the distribution of environmen-
tal factors across the study area.
Linking data from the NC-ADDM Network and vital

records also strengthened our analyses. Vital records
provided individual-level data on a number of covari-
ates, allowing us to account for spatial confounding by
these factors, and also provided residential location at
the time of birth, which may be more relevant to ASD
etiology than the address at diagnosis. Although the
majority of children with ASD at age 8 in ADDM were
also born in the study area, local changes in address
were common (68.14% of children with ASD had a
change in residential address between birth and age 8).
If the spatial patterns we observed are due to difference
in diagnosis, spatial variability may be more apparent
using a later address corresponding to the time of
diagnosis.
A final strength of our study was our ability to evalu-

ate the influence of potential sibling clusters in analyses.
While it is often suggested that including siblings in ana-
lyses will induce clustering, we did not observe this pat-
tern in our data. One possible explanation is that the
number of siblings in our analyses was relatively small
(e.g. 269 sibling pairs in the ASD analysis of 11,566
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children), due in part to the biennial study design and
the selection of only part of the source population
(15%).
There are also several important limitations of our

methods. We chose the optimal tradeoff between bias
and variance of the smooth (the optimal span size) by
minimizing the AIC. Selecting the optimal span size for
a dataset, however, may obscure important small scale
variability in maps; it is possible that our analyses were
conducted on a scale too large to identify small scale en-
vironmental exposures relevant in the etiology of ASD.
Examining different span sizes may reveal important fea-
tures of the data. Similarly, we assessed spatial con-
founding by visually comparing maps of prevalence
before and after adjustment holding the span size and
included observations constant and by investigating
changes in the optimal span size before and after adjust-
ment [18]; however, more objective methods of assessing
confounding are needed and are an important topic for
future research. We also used p-values as a screening
tool, to evaluate the global spatial variation as well as
areas of increased or decreased prevalence. Our use of
p-values here was to evaluate whether or not spatial
variability existed (i.e. whether the prevalence of ASD
was constant across the geographic area). Nonetheless,
many epidemiologists prefer the use of confidence inter-
vals, which provide information on the precision of the
observed association [39]. While it is possible to calcu-
late confidence intervals in these analyses, it is visually
difficult to display three surfaces simultaneously on
maps. Additionally, we conducted permutation tests
using the span size of the observed data to test the null
hypothesis that the map is flat. Permuted datasets
under this null hypothesis may have had a larger optimal
span size, particularly for the ID analyses, which had
a relatively small span size for the observed data (opti-
mal span = 0.30). Consequently, using the span size of
the observed data could result in a p-value that is too
small [18].
Conclusions
Our results demonstrate the importance of adjusting for
predictive and diagnostic factors that may spatially con-
found the search for novel environmentally-distributed
risk factors for ASD. These adjustment methods can
help the search for causes of developmental disabilities
proceed more efficiently by aiding the interpretation of
geographic patterns. Cumulatively, our results suggest
that known predictive factors for ASD account for a
large portion of the observed geographic variability in
prevalence in central North Carolina. Although we did
not identify spatial variability in ASD in NC after con-
trolling for known predictive and risk factors, follow up
of these results in other regions is may provide clues for
ASD etiology.

Additional file

Additional file 1: Figure S1. Mother’s educational attainment at the
time of birth n=11,034. Map reflects the optimal span size of the ASD
analyses (span=0.95; global P<0.001); the optimal span size of the
education analysis was 0.05 (global P<0.001). Larger prevalence ratios
indicate a higher prevalence of mothers with college or more education
at the child’s birth. Areas of significantly increased and decreased risk are
indicated by black contour bands. Figure S2. Adjusted maps for (A) ASD
prevalence (birth cohort n=11,034 and ASD n=532), (B) ASD-ID (birth
cohort n=11,034 and ASD-ID n=318), and (C) ASD+ID (birth cohort
n=11,034 and ASD+ID n=214). Maps are not significantly different than
flat (global P=0.052, global P=0.294 and global P=0.196, respectively).
Adjustment factors were year of birth; plurality; maternal age, race, and
level of education; and report of tobacco use during pregnancy.
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